熱輸入與熔池大小不同氣體保護焊的熱輸入高、熔池大(通常寬 5-15mm),需要較慢速度保證熔池凝固成型;激光焊熱輸入低、熔池窄(通常寬 1-3mm),熔池冷卻速度快,可在高速移動中完成焊接,且不易出現焊穿或變形。
熱源特性決定熱影響區大小激光焊能量密度(10?-10? W/cm2),能快速熔化金屬并快速冷卻,僅作用于極小區域,因此熱影響區小、變形小;氣體保護焊能量密度低(103-10? W/cm2),加熱范圍廣、冷卻慢,必然導致熱影響區擴大,變形風險增加。
氣體保護焊的質量優勢場景
對焊縫外觀要求不高的結構件(如卡車車架),即使有輕微波紋,也不影響整體強度。
厚板焊接(≥15mm),通過多層多道焊可彌補熱影響區大的問題,保證焊縫填滿和強度。
現場維修或小批量生產,無需復雜工裝,通過經驗調整參數即可滿足基礎質量要求。
激光焊的質量優勢場景
精密部件(如醫療器械、電子傳感器),需極小的熱影響區避免部件功能失效。
輕量化材料(如鋁合金、碳纖維),低熱變形可防止材料開裂或性能下降。
密封件(如鋰電池外殼、壓力容器),高致密性焊縫能杜絕泄漏風險。
