工藝連續性不同氣體保護焊受電弧穩定性限制,速度過快易出現 “未熔合”“咬邊” 等缺陷;激光焊搭配自動化送絲和視覺定位時,工藝穩定性更高,可長期維持高速焊接,不易出現質量波動。
氣體保護焊:汽車 “骨架” 的核心焊接工藝
氣體保護焊(以 CO?焊、MAG 焊為主)的優勢是成本低、適應厚板焊接,因此主要用于汽車 “承力結構件”,確保車身整體強度和穩定性。
車身底盤:車架縱梁、橫梁、懸掛支座等厚壁鋼件(厚度 5-15mm)的連接,需承受行駛中的沖擊和載荷,氣體保護焊能保證焊縫強度,且成本可控。
車身骨架:車門框架、A/B/C 柱、車頂橫梁等支撐部件(厚度 3-8mm)的拼接,常用混合氣體(氬氣 + 二氧化碳)保護焊,減少焊縫氣孔、夾渣,平衡強度與成型性。
動力總成周邊:發動機支架、變速箱殼體與車身的連接部位,以及排氣管中段(厚度 4-10mm)的焊接,適應中等厚度金屬的連接,且能應對一定的高溫工況。
商用車領域:卡車、客車的車架大梁(厚度 10-20mm)焊接,多采用多道氣體保護焊,滿足重載場景下的結構強度需求。
熱源特性決定熱影響區大小激光焊能量密度(10?-10? W/cm2),能快速熔化金屬并快速冷卻,僅作用于極小區域,因此熱影響區小、變形小;氣體保護焊能量密度低(103-10? W/cm2),加熱范圍廣、冷卻慢,必然導致熱影響區擴大,變形風險增加。
工藝穩定性影響缺陷控制激光焊依賴自動化設備和參數(如激光功率、光斑大小、焊接速度),只要參數設定合理,質量穩定性;氣體保護焊受人工操作影響大(如焊槍角度、行走速度、送絲穩定性),即使參數相同,不同操作者的焊接質量也可能有差異。
