為確保選舉公正,讀票機需具備以下技術與措施:
1. 防篡改與加密技術
數據傳輸加密(如 SSL/TLS 協議),防止中途篡改。
區塊鏈技術應用:部分試點項目通過區塊鏈記錄選票數據,確保不可篡改(如西弗吉尼亞州區塊鏈投票試驗)。
2. 冗余與審計機制
紙質選票備份:電子讀票機需配合紙質選票,供人工審計或系統故障時使用。
雙重計數驗證:部分系統采用兩臺讀票機獨立計數,結果一致才確認有效。
3. 抗干擾與穩定性設計
防電磁干擾:設備硬件需通過電磁兼容性(EMC)測試,避免外界信號干擾。
離線模式:支持斷電或網絡中斷時離線計數,恢復后同步數據。
4. 用戶驗證與權限控制
操作員身份認證:僅授權人員可訪問系統后臺,操作記錄全程留痕。
選票防偽:通過水印、熒光油墨等物理防偽技術,防止偽造選票。
圖像預處理:優化原始掃描數據
灰度化處理:將彩色圖像轉換為灰度圖,突出標記與背景的亮度差異(如鉛筆填涂區域灰度值較低)。
二值化轉換:通過設定閾值(如灰度值低于 128 視為標記),將圖像轉化為黑白二值圖,簡化后續計算(例:填涂框內黑色像素占比≥30% 視為有效標記)。
噪聲過濾:利用中值濾波、高斯濾波等算法,消除紙張污漬、折疊陰影等干擾(如去除面積小于 10 像素的孤立黑點)。
幾何校正:通過檢測選票邊緣的定位標記(如 registration marks),校正因傳送歪斜導致的圖像旋轉或縮放,確保標記位置與預設模板對齊。
標記區域定位:鎖定選票上的有效選擇區
模板匹配:讀票機內置選票格式模板,通過檢測預設的定位點(如角點、條形碼)確定候選人選項框、政黨符號等區域的坐標范圍。
興趣區域(ROI)劃分:將選票圖像分割為多個獨立 ROI(如每個候選人對應一個矩形區域),減少全局分析的計算量。
示例:美國大選使用的 “蝶形選票”(Butterfly Ballot)中,讀票機通過模板定位左右兩列候選人姓名旁的填涂框,避免因選民誤填相鄰區域導致誤判。
特征提取與判斷:識別選民的選擇意圖
根據選票標記類型(填涂、勾選、手寫符號等),算法采用不同的特征提取策略:
(1)填涂標記識別(常見場景)
面積占比法:計算填涂框內黑色像素占比,超過閾值(如 30%-50%)則判定為有效選擇。
例:選民使用 2B 鉛筆填涂候選人 A 的方框,掃描后該區域黑色像素占比達 45%,算法判定為有效投票。
邊緣檢測法:通過 Canny 或 Sobel 算子檢測填涂區域的邊緣輪廓,與標準填涂形狀(如矩形、圓形)比對,排除不規則標記(如筆尖打滑形成的短線)。
濃度梯度分析:填涂越均勻的區域,灰度值分布越集中,算法可通過統計像素灰度方差來區分 “認真填涂” 與 “輕微觸碰”。
(2)勾選或手寫符號識別
形態學分析:通過膨脹、腐蝕等形態學運算,將勾選符號(√)或手寫標記(如 “○”)轉換為標準形狀,再與預設模板匹配。
方向特征提取:對于斜線標記(如 “/”),計算像素分布的梯度方向,判斷是否符合 “勾選” 的典型角度(如 45° 或 135°)。
(3)異常標記檢測
多選判定:同一候選區域內檢測到多個標記(如同時填涂兩個候選人框),或單票標記數超過規定(如總統選舉多選 1 人),則判定為無效票。
空白票識別:所有候選區域標記面積均低于閾值,判定為未投票。
4. 結果驗證與輸出:確保計數準確性
重復校驗:對關鍵標記區域進行多次掃描(如兩次獨立圖像采集),結果一致才確認有效。
人工復核接口:對算法判定存疑的選票(如填涂面積接近閾值、標記形狀模糊),生成圖像供選舉工作人員人工審核(如美國部分州要求對 “爭議票” 進行人工查驗)。
數據輸出:將識別結果轉換為結構化數據(如候選人 ID、得票數),同步至中央數據庫或打印紙質統計表。

